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Abstract—Balancing unit statistics in tactical role playing 

games (TRPGs) is a critical but notoriously complex task, often 

constrained by the limitations of manual playtesting and 

subjective developer intuition. This paper presents an automated 

framework for unit balancing based on heuristic search and 

scenario-based evaluation. Units are modeled using core combat 

attributes and are tested against a diverse set of predefined 

combat scenarios to simulate near optimal play. The simulation 

engine employs a depth limited depth-first search (DFS) with 

alpha-beta pruning and top N action filtering to explore plausible 

combat outcomes efficiently. A win rate-based fitness function 

evaluates unit performance across all scenarios, offering an 

objective and quantifiable balance metric. A random search 

strategy is used to tune unit parameters until their aggregated 

performance matches a defined baseline. The resulting system 

reduces the subjectivity and time cost of manual balancing, 

offering a scalable, extensible, and data-driven alternative for 

developing fair and strategically deep tactical game experiences. 
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I.  INTRODUCTION 

Game balance is an important piece of successful game 
design, fundamentally influencing player retention, 
satisfaction, and a game's long term viability. An unbalanced 
game, whether perceived as extremely difficult or easy, leads to 
player frustration or boredom, often resulting in player 
disengagement. The objective of balancing is to create a fair 
and enjoyable experience, offering a sense of accomplishment 
when challenges are overcome, without falling into 
overwhelming difficulty or a lack of meaningful opposition.  

However, achieving this equilibrium through traditional, 
manual methods is with significant limitations. Modern games 
are characterized by their depth and their vast global player 
base, rendering it practically impossible for even large 
development teams to fully comprehend every conceivable 
combination or variation of gameplay. Manual balancing 
processes rely heavily on iterative human playtesting, a method 
that is extremely time consuming and often insufficient for 
games featuring complex, intransitive mechanics. This often 
necessitates the release of numerous balance patches post-
launch, indicating an ongoing struggle to achieve stability. 

Furthermore, balance decisions made purely on numerical data 
or solely on subjective feeling often lead to unwelcomed 
outcomes. 

The manual balancing process is also quite subjective, 
heavily dependent on developer intuition and the limited scope 
of internal playtesting and player feedback. The cognitive load 
imposed on a single designer or even a dedicated team to 
predict all tactical implications of stat modifications in a 
complex grid based game is immense. For example, in games 
like Fire Emblem Fates Conquest, enemy AI is designed to 
effectively target weaker units, and resource management is 
critical, making precise manual tuning of unit capabilities quite 
challenging. This human cognitive limitation means that 
despite best efforts, manual balancing can lead to unintended 
dominant strategies, situations where decisions become 
meaningless, or a general lack of counterplay, diminishing the 
strategic depth of the game. 

In response to the inherent limitations of balancing, 
specifically manual unit balancing in grid based tactical games 
for this paper, characterized by its time consuming nature and 
subjective outcomes, this project proposes a systematic and 
automated solution. The core objective is to automatically 
balance a game unit by evaluating its performance across a 
predefined set of diverse combat scenarios. 

Using unit modeling, an evaluator, various scenario sets, a 
fitness function, and a balancing strategy, creates a powerful 
synergy for great evaluation. The near optimal play can be 
achieved by the DFS-based engine. Furthermore, the use of a 
diverse set of predefined scenarios ensures that this competent 
evaluation is more flexible and does not limits the balance for 
specific scenarios. This prevents the unit from being 
inadvertently balanced for one specific enemy type while 
remaining overpowered or underpowered against others. This 
synergistic combination renders the evaluation not only 
computationally efficient but also highly reliable and 
comprehensive. It directly addresses the inherent subjectivity 
of manual balancing by providing objective, data-driven 
performance metrics under realistic and challenging conditions, 
thereby yielding a more robust and generalizable balance 
configuration. 
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II. THEORETICAL BASIS 

A. Depth First Search 

Depth First Search (DFS) is a fundamental graph traversal 
algorithm that forms the basis for exploring complex structures 
like game trees in artificial intelligence. It operates by 
systematically exploring as far as possible along each branch 
before backtracking. When traversing a graph, DFS explores an 
adjacent vertex and then recursively completes the traversal of 
all vertices reachable through that adjacent vertex before 
moving to other neighbors. This behavior is similar to a tree 
traversal where an entire subtree (example, the left subtree) is 
fully explored before moving to another (example, the right 
subtree). 

 

Figure 2.1. DFS Visualization. Source: 
https://www.wscubetech.com/resources/dsa/dfs-vs-bfs  

A key consideration in graph traversal, particularly for 
graphs that may contain cycles, is to prevent redundant 
processing of nodes. DFS addresses this by typically 
employing a mechanism, such as a boolean visited array, to 
keep track of already explored nodes. The algorithm can be 
implemented to start from a given source node and explore all 
reachable vertices, or to perform a complete traversal of a 
disconnected graph by iteratively calling the single-source DFS 
for all unvisited vertices. The time complexity for DFS is 
generally O(V + E), where V represents the number of vertices 
and E represents the number of edges in the graph. Its auxiliary 
space complexity is also O(V + E), primarily due to the visited 
array and the call stack for recursive operations.[1] 

In the context of game AI, DFS provides the underlying 
search mechanism for algorithms like Minimax and Alpha Beta 
pruning, which explore the vast game tree to determine optimal 
moves. Its depth first nature allows for a thorough examination 
of potential move sequences and their consequences, making it 
a favored approach for game playing programs due to its 
simplicity and effectiveness in traversing deep branches of the 
game tree.[2] 

B. Minimax 

The simulation engine uses a search typically used for 
competitive environments with conflicting goals. The Minimax 
algorithm is foundational for optimal decision making, 
constructing and traversing a game tree of possible moves and 
states. It recursively evaluates nodes, maximizing the current 
player's utility while minimizing the opponent's, assuming 
optimal counter play. This framework ensures the unit's 

performance is assessed against a challenging, strategic 
opponent, crucial for producing robust balance configurations. 
Aiming for near optimal play ensures the win-rate metric 
reliably indicates balance against a competent player, not a 
naive one. 

 

Figure 2.2. Minimax Visualization. Source: 
https://medium.com/@aidenrtracy/the-minimax-algorithm-f6e8e0a1eadb  

 

There is a pruning method called Alpha Beta pruning that 
optimizes Minimax by reducing computation time through 
intelligent branch elimination. It maintains alpha (best value for 
maximizer) and beta (best value for minimizer) values. if alpha 
is more than beta, the branch is pruned. Alpha Beta is favored 
for its efficiency in game playing programs and can be 
enhanced by transposition tables and narrow search windows.  

This paper also uses a "Top-N move” pruning method that 
complements Alpha-Beta by focusing the search on promising 
moves, balancing search depth for near optimal play with 
computational  time for numerous simulations. 

C. Tactical Role Playing Games 

Tactical Role Playing Games (TRPGs) are defined by their 
unique fusion of deep character development and strategic 
combat, typically unfolding on grid based maps. These games 
emphasize strategic decision-making, often presenting battles 
as intricate puzzles where players must skillfully outmaneuver 
their adversaries. The genre is characterized by grid-based 
movement, often on hexagonal maps, and a turn-based combat 
system where players control their entire party's actions before 
the enemy's turn commences. This ‘full team turns’ mechanic 
is a defining feature, allowing for comprehensive strategic 
planning within each round. 

The strategic depth of these games is enriched by several 
key mechanics. Positioning is paramount, as controlling terrain, 
gaining initiative, and utilizing environmental cover can 
significantly influence battle outcomes. Features such as zones 
of control restrict the movement of engaged units, while 
flanking or rear attacks offer tactical advantages, potentially 
negating enemy counterattacks or bypassing defensive 
measures like block points. The inclusion of diverse attack 
types, including ranged attacks from archers, line attacks that 
strike multiple units in a row, and wide area attacks from two 
handed weapons, adds layers of tactical variety. Furthermore, 
support units like healers and a wide array of active and passive 
skills, offering buffs to allies or debuffs to enemies, 
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significantly expand the tactical options available to players. 
Missions often incorporate secondary objectives beyond simple 
enemy elimination, adding further complexity and strategic 
considerations. 

 

Figure 2.1. TRPG Fire Emblem. Source: 
https://www.gamestop.com/video-games/nintendo-switch/products/fire-

emblem-engage/20001849.html  

 

The effectiveness of a unit's design is deeply intertwined 
with the tactical environment provided by the map. Mechanics 
such as zones of control, flanking or rear attacks, and block 
points are heavily influenced by a unit's position on the grid-
based maps. Similarly, the importance of positioning and the 
impact of terrain effects are repeatedly emphasized within the 
genre. This inherent interdependence implies that true unit 
balance is not merely a matter of internal numerical 
consistency but also how a unit performs across a variety of 
tactical environments. A unit perfectly balanced for open 
terrain might be overpowered in tight corridors or 
underpowered if its range cannot be effectively leveraged due 
to obstacles. The project's use of a diverse set of predefined 
scenarios implicitly addresses this, as these scenarios likely 
represent different map layouts or enemy compositions that 
challenge units in varied ways, thereby fostering a more robust 
balancing outcome. 

In this project, game units are modeled using a set of core 
attributes that are fundamental to their performance in turn 
based and grid based combat. These attributes are standard 
across the tactical RPG genre and include: 

• HP (Health Points): This attribute determines the total 
health of a character, directly impacting its 
survivability and endurance in combat encounters. 

• ATK (Attack): This statistic dictates the damage dealt 
by a unit's equipped weapons, serving as its primary 
offensive capability. 

• DEF (Defense): This attribute reduces the amount of 
damage taken from enemy attacks, contributing to a 
unit's overall resilience and durability. 

• MOV (Movement): Representing the number of grid 
spaces a unit can traverse per turn, this attribute is 
critical for tactical positioning, flanking maneuvers, 
and controlling the battlefield. 

• RNG (Range): This attribute defines the maximum 
distance from which a unit can initiate an attack. Its 

importance is implied by the presence of ranged 
attacks from archers in tactical games. 

• SPD (Speed): This attribute influences a unit's evasion 
(dodge chance), its priority in counterattacks, and its 
ability to perform double attacks if its speed 
significantly exceeds that of an opponent (example by 
4 points). 

• CRIT (Critical Chance): This attribute boosts a unit's 
accuracy and hit chance, determining the likelihood of 
successfully landing an attack and potentially dealing 
critical damage. 

These core attributes combine to form derived combat 
statistics, such as a unit's overall Attack value, which might 
combine its Strength with the damage rating of its equipped 
weapon. This intricate interplay of statistics creates complex 
interactions, such as the Speed versus Speed comparison for 
double attacks, which underscores the profound challenge of 
manual balancing. 

The impact of changing a single unit statistic is often not 
linear but rather threshold-based or multiplicative. For 
example, a small increment in a unit's Speed might have no 
observable effect until it crosses a specific threshold relative to 
an opponent's Speed, at which point it suddenly grants a 
significant advantage, such as a double attack. Similarly, 
accuracy might scale non-linear with the Skill attribute. This 
non linear behavior makes manual balancing exceptionally 
difficult, as minor numerical tweaks can lead to 
disproportionately large effects, or conversely, no effect at all, 
until a critical breakpoint is reached. Automated simulation and 
optimization are therefore indispensable for effectively 
navigating this complex, non linear performance landscape and 
achieving precise unit balance. 

III. IMPLEMENTATIONS 

A. Unit and Battlefield Representation 

Each unit in the system is modeled as a structured object 
with attributes such as maximum hit points (HP), attack power 
(ATK), defense (DEF), movement range (MOV), attack range 
(RNG), speed (SPD), and critical hit rate (CRIT). These 
attributes determine how a unit performs in combat. A unit is 
also associated with a team designation, either red or blue, and 
is assigned a fixed position on a 2D grid-based battlefield. The 
battlefield itself is represented as a finite-sized grid that 
manages tile-based positioning and enforces constraints on unit 
movement, such as staying within bounds and avoiding 
occupied tiles. This representation mirrors the structure of 
typical turn-based tactical games and provides a deterministic 
foundation for simulating discrete combat scenarios. 

B. Battle Simulations 

Combat simulation is implemented using a depth limited 

recursive search inspired by the Minimax algorithm. Each 

layer of recursion corresponds not to a single unit's action, but 

to a full team turn meaning that all remaining units on a team 

execute their actions before the turn passes to the opposing 

side. This model more accurately reflects the turn structure 
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found in tactical games like Fire Emblem, where players 

control multiple units per phase. The system explores action 

sequences using depthnfirst search, but integrates alpha beta 

pruning to eliminate branches that cannot influence the final 

outcome. To further control the branching factor, the system 

filters actions using a top N heuristic. For each unit, the 

simulation evaluates all legal move and attack combinations, 

ranks them based on factors such as potential damage and 

proximity to enemies, and selects only the highest scoring N 

actions for further evaluation. This selective pruning 

significantly improves runtime without discarding the most 

promising tactical options. The recursion continues until the 

maximum depth is reached or until one team has been 

completely defeated. 

C. Heuristic Evaluation 

At the leaves of the search tree, or when the recursion 

depth limit is reached, the system evaluates the resulting game 

state using a heuristic function. The primary metric is the 

difference in total remaining hit points between the red and 

blue teams. A positive score indicates a favorable state for the 

red team, while a negative score favors the blue team. This 

continuous scoring mechanism provides gradient feedback for 

optimization and allows the balancer to compare outcomes 

across scenarios.  

In addition to scoring the outcomes, the simulator also 

records the sequence of actions that led to each evaluated 

state. This is done using an ActionStep structure, which 

captures the acting unit, the origin and destination of its 

movement, the type of action performed (e.g., move, attack, or 

move attack), and the target unit if applicable. As the recursive 

search proceeds, the optimal path is propagated upward along 

with the score, making it possible to extract the best move 

sequence under the assumed depth and search conditions. 

D. Scenario Based Evaluation 

To evaluate unit effectiveness in a balanced and 

generalizable way, the system tests each candidate 

configuration against a fixed set of combat scenarios. Each 

scenario defines an enemy unit with specific stats and a 

starting position, intended to represent different combat 

archetypes such as ranged attackers, high-defense tanks, or 

fast melee units. These scenarios remain constant across all 

candidate evaluations to ensure consistency.  

For each scenario, the candidate unit is paired against the 

scenario enemy on a fresh battlefield, and the battle is 

simulated using the heuristic DFS engine. The outcome is 

recorded as a win, loss, or draw based on the evaluation score, 

and a binary win-rate score is computed for the entire set. This 

scenario-based approach provides a more comprehensive 

picture of unit viability than single-match evaluation and 

encourages general robustness rather than optimization for 

narrow cases. 

E. Random Stat Optimization 

The auto-balancing mechanism employs a random search 

strategy over a predefined space of tunable parameters. Each 

candidate configuration is generated by sampling values for 

selected stats such as HP, ATK, and DEF within bounded 

integer ranges. Other stats, such as movement range or critical 

rate, may be held constant to simplify the search.  

Each candidate configuration is evaluated using the same 

scenario-based performance function as described above. The 

system computes the total win rate across all scenarios and 

compares this value against a target, either a fixed percentage 

(e.g., 50%) or the known win rate of a baseline reference unit. 

The configuration that minimizes the absolute difference 

between the candidate and target win rates is retained as the 

best-performing unit. This process is repeated for a fixed 

number of iterations (typically several hundred) to ensure 

adequate coverage of the search space. 

IV. TESTING AND ANALYSIS 

Testing is done using these configurations as the basis. 

 

Random Trials 500 

Depth per Simulation 3 

Top-N Actions 3 

Scenario Set One versus one against 6 

combat archetypes. 

Reference Unit BaselineKnight 
Table 4.1. Simulation configurations. 

 

BaselineKnight, being as the reference unit for the 
simulation, provides these results when put inside the 6 
different scenarios. 

 

 
Figure 4.1. BaselineKnight results. 

 

Using these win rate, the program will create a candidate 
that has similar win ratio. These are two candidate results using 
different results: 

 

Figure 4.2. CandidateKnight results. 
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Figure 4.3. CandidateKnightV2 results. 

 

As we can see, both candidates got the exact same win rates 
among the 6 scenarios provided. Both having the same win and 
losses for every scenarios is entirely coincidental. This 
behavior will disappear when using a vast more scenarios with 
more units in each of them. Also something to notice is that  
the score of each scenarios is somewhat similar with a margin 
below 5. 

And lastly, these are the optimized and ‘most balanced’ 
configurations based on each candidates. 

 

Figure 4.4. CandidateKnight optimized config. 

 

 

Figure 4.5. CandidateKnightV2 optimized config. 

 

V. CONCLUSION 

This paper highlights the increasing challenges of manually 
balancing units in complex, grid based tactical games. The 
combinatorial complexity of game elements makes traditional 
methods time consuming, subjective, and insufficient, often 
leading to frequent post-release patches. This bottleneck in 
human cognitive capacity necessitates automated solutions.  

The paper offers an automated unit balancing system driven 
by scenario based simulation. It leverages adversarial search 
algorithms (Minimax with DFS and Alpha Beta pruning) to 
simulate near optimal play, ensuring meaningful win rate 
evaluation against competent opponents. A diverse set of 
predefined combat scenarios ensures robust and generalizable 
balance. 

 The win rate based fitness function provides an objective, 
quantifiable measure for balance, complementing manual 

tuning's subjectivity. Random search is a pragmatic 
optimization strategy, offering simplicity and effectiveness in 
exploring the high-dimensional, non-linear parameter space of 
unit statistics.  

In essence, this research demonstrates a viable path towards 
more efficient, objective, and robust game balancing. By 
automating complex numerical optimization, game developers 
can potentially reduce development time, minimize post release 
issues, and deliver more consistently enjoyable and 
strategically deep tactical games. 
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